首页> 外文OA文献 >Analysis of classifiers' robustness to adversarial perturbations
【2h】

Analysis of classifiers' robustness to adversarial perturbations

机译:分类器对敌对扰动的鲁棒性分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The goal of this paper is to analyze an intriguing phenomenon recentlydiscovered in deep networks, namely their instability to adversarialperturbations (Szegedy et. al., 2014). We provide a theoretical framework foranalyzing the robustness of classifiers to adversarial perturbations, and showfundamental upper bounds on the robustness of classifiers. Specifically, weestablish a general upper bound on the robustness of classifiers to adversarialperturbations, and then illustrate the obtained upper bound on the families oflinear and quadratic classifiers. In both cases, our upper bound depends on adistinguishability measure that captures the notion of difficulty of theclassification task. Our results for both classes imply that in tasks involvingsmall distinguishability, no classifier in the considered set will be robust toadversarial perturbations, even if a good accuracy is achieved. Our theoreticalframework moreover suggests that the phenomenon of adversarial instability isdue to the low flexibility of classifiers, compared to the difficulty of theclassification task (captured by the distinguishability). Moreover, we show theexistence of a clear distinction between the robustness of a classifier torandom noise and its robustness to adversarial perturbations. Specifically, theformer is shown to be larger than the latter by a factor that is proportionalto \sqrt{d} (with d being the signal dimension) for linear classifiers. Thisresult gives a theoretical explanation for the discrepancy between the tworobustness properties in high dimensional problems, which was empiricallyobserved in the context of neural networks. To the best of our knowledge, ourresults provide the first theoretical work that addresses the phenomenon ofadversarial instability recently observed for deep networks. Our analysis iscomplemented by experimental results on controlled and real-world data.
机译:本文的目的是分析最近在深度网络中发现的一种有趣现象,即其对对抗扰动的不稳定性(Szegedy等人,2014)。我们提供了一个理论框架,用于分析分类器对对抗性摄动的鲁棒性,并显示分类器鲁棒性的基本上限。具体来说,我们确定了分类器对对抗扰动的鲁棒性的一般上限,然后说明了线性分类器和二次分类器族的上限。在这两种情况下,我们的上限都取决于可区别性度量,该度量捕获了分类任务的难度概念。我们对这两个类别的结果都表明,在涉及小的可区分性的任务中,即使实现了良好的准确性,在考虑的集合中没有分类器将对对抗性摄动具有鲁棒性。此外,我们的理论框架表明,与分类任务的难度(由可区分性捕获)相比,对抗性不稳定的现象是由于分类器的灵活性低所致。此外,我们证明了分类器随机噪声的鲁棒性与对抗性扰动的鲁棒性之间存在明显的区别。具体而言,对于线性分类器,显示的前者比后者大一个与\ sqrt {d}(d为信号维)成比例的因子。该结果为高维问题中两种鲁棒性之间的差异提供了理论上的解释,这是在神经网络的上下文中根据经验观察到的。据我们所知,我们的结果提供了第一项理论研究,以解决最近在深度网络中观察到的对抗性不稳定现象。我们的分析与受控和真实数据的实验结果相辅相成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号